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This final report summarizes accomplishments in two areas of computa-
tional methods for stochastic systems.

1 Large deviations and computational methods for rare event
problems

1.1 Problem formulation and issues

There is significant interest in the application of uncertainty quantification to
problems with small probabilities (rare events). For example, it is a research
focus for the SAMSI/Sandia Summer School on Uncertainty Quantification
in 2011, and has been the focus at other workshops, including workshops at
SAMSI and ICERM in 2012. Though these probabilities may be small, they
are often critical measures of system performance and one needs reasonably
reliable numerical methods. Unfortunately, standard numerical schemes are
not at all reliable for problems with rare events.

This part of the research project was concerned with developing efficient
Monte Carlo algorithms for rare event simulation and the associated large
deviations theory. The analysis and design of such schemes require first
an understanding of the qualitative properties of the rare events, and this
usually means that a large deviations analysis, which identifies via a vari-
ational characterization the quantitative and qualitative properties of the
rare events. Once this is available, various methods can be analyzed.

For the problem of estimating the probability of a singe rare event there
are two methods currently in use. One is based on simulating according to a
different distribution and then correcting for any induced bias via the like-
lihood ratio (importance sampling). The key question here is how to select
the new sampling distribution. The second method simulates a branching
process, i.e., collection of particles that can split according to certain rules
to form new particles, each of which behaves like the original particle or
process. The splitting rules are designed to make the rare event likely for at
least one of the descendent particles, and the estimator is the ratio of num-
ber of particles for which the rare outcome is observed to the total number
of descendents. The key question here is what should trigger a split and,
given that a split occurs, the number of descendents. Most of the literature
on these methods features schemes based on heuristic design, with little or
no analysis. However, the design problem with both methods is subtle, and
reasonable looking schemes can perform quite poorly. Indeed, simulations
based on improperly designed schemes could be highly misleading.

A second class of problems considers the numerical approximation of the



invariant distribution for stochastic systems with multiple metastable states
using the occupation measure of a related Markov process. Moving from
one metastable state to another is a rare event, and its treatment is the key
question in the design of efficient Monte Carlo schemes. There are many
ad hoc algorithms available. However, these algorithms do not always work
well and have to be applied with some care.

1.2 Results and key findings

The focus of this work has been in the development of the large deviation
theory for infinite dimensional systems, and construction and analysis of
splitting type schemes for finite dimensional problems.

The papers [1,2] continue a long term project in the development of large
deviations theory for infinite dimensional systems. The starting point for
much mathematical modeling in fluid dynamics, geophysics, climate science,
neurophysics, chemical reaction diffusion systems, and many other areas is
often a partial differential equation (PDE) based on fundamental physical
constitutive laws. Such PDE are often inadequate—they do not capture
stochastic fluctuations and variability resulting from noise processes, ran-
domly varying coefficients, measurement quantization, etc. Stochastic PDEs
(SPDEs) are frequently proposed as improved models that systematically
account for randomness. A question of fundamental interest is then: How
do predictions based on the stochastic model differ from predictions based
on the corresponding deterministic PDE? When the noise fluctuations are
“small,” a basic mathematical approach to quantify probabilities of diver-
gence between such predictions is through the theory of large deviations.
Though well developed for finite dimensional systems, technical difficulties
have severely limited the use of large deviations theory for these infinite
dimensional problems. Our goal has been to develop techniques capable of
handling the wide range of problems of interest.

The paper [2] develops a variational representation for nonnegative func-
tionals of infinite dimensional Brownian motion and Poisson random mea-
sures. Using also techniques from the theory of stochastic control and weak
convergence, the study of large deviations is reduced to the analysis of basic
qualitative properties of controlled analogues of the deterministic PDEs: ex-
istence and uniqueness of solutions, stability under bounded perturbations.
It gives a technically much simpler and unified framework for treating a
broad family of infinite dimensional jump-diffusion models. The approach
(also developed in prior publications) has become the method of choice for
studying small noise asymptotics for SPDEs, and has been adopted by other



researchers to study many different sorts of problems. With the last several
years more than 20 publications have appeared which use the basic theory
we have developed to analyze a range of problems in SPDE.

The papers [3,7] are concerned with branching type schemes for rare
event estimation. Paper [7] uses ideas from ordinary splitting for the analy-
sis of what are called “counting” problems. These problems are discrete
state analogues of the problem of volume estimation. The problem is to
estimate the size of a very large but finite population of discrete objects. By
embedding the objects into a larger space with a known population, one can
interpret the relative size of the populations as a probability, and thereby
apply Monte Carlo methods to the estimation problem. In addition to the
use of ordinary splitting to obtain a good estimate [7], introduces the novel
use of what is known as capture-recapture to bootstrap to much more accu-
rate estimates. Though theoretical analyses have yet to be carried out, the
method worked very well for certain very challenging benchmark problems
in counting.

An alternative to standard splitting uses an interacting particle systems.
With this approach a fixed number of particles N is maintained via the
following mechanism. Suppose one wants to estimate the probability of
hitting a rare set B before some reference event A. The splitting mechanism
is defined by a collection of thresholds, which should in some sense help
ensure that at least some particles reach B. Starting with IV particles in
a given threshold, one simulates all IV until either they have reached the
next threshold or been absorbed into A. Given the locations of the particles
that made it to the next threshold, one samples from these according to the
uniform distribution to make up the full complement of N particles. The
product of the fraction of particles that make it to each of the successive
thresholds is then an unbiased estimator.

One possible advantage of this method is that the a priori bound on
the number of particles provides some guarantee that the computation will
not get out of hand. On the other hand, there has been essentially no
analysis of performance of the scheme as the event of interest becomes rare,
and in particular there are no known necessary and sufficient conditions for
good performance. The reason is of course the interaction, which makes
the application of standard techniques such as large deviation methods very
difficult. The key time scale in the problem is not that of the underlying
process, but rather a time scale that measures progression with respect to
threshold levels. These features complicate the analysis greatly.

The paper [3] provides the first rigorous analysis of the performance of
this class of algorithms in the small probability limit. Owing to the com-



plexities of the algorithm, the analysis is limited to dimension one. However,
the results support some of the claims that have been made concerning these
algorithms (but based only on numerical evidence), and in particular sug-
gest that, at least for one dimensional problems, they are less sensitive to
the details of the underlying distributions than competing schemes.

The paper [6] considers the problem of approximating stationary distri-
butions of a Markov chain by simulation. Our initial goal was to use large
deviation ideas to choose design parameters in an existing scheme known as
parallel tempering. Parallel tempering (also known as replica exchange sam-
pling) is a standard method for simulating complex systems, and is used in
many commercial software packages. In this algorithm simulations are con-
ducted in parallel for a family of Markov chains indexed by a “temperature”
parameter, and the key improvement over standard Monte Carlo is a swap
mechanism that exchanges configurations between these parallel simulations
at a given rate. The mechanism is designed to allow the low temperature
system to escape from deep local energy minima where it might otherwise be
trapped, via those swaps with the higher temperature components. Based
on large deviation theory, we have argued that the rate of convergence of
the empirical measure is a monotone increasing function of the swap rate.
This suggests that one should raise the swap frequency in order to improve
efficiency, but this is eventually counter-productive since eventually most
of the computational effort is directed towards swapping and little towards
moving the process dynamics. However, it turns out that one can construct
a simulation scheme that is equivalent to the limit of the parallel tempering
schemes in the sense of distributions, but which involves no swapping at
all. With this scheme, which we call infinite swapping (INS), the effect of
the swapping is captured by a collection of weights that influence both the
dynamics and the empirical measure.

While the infinite swapping scheme optimizes the convergence rate as
described above, it has practical limitations in implementation due to the
complexity of the weights when the number of temperatures is large (>7).
Complex problems often involve scores of temperatures, and so it was criti-
cal to overcome this limitation. We have developed an approximation to the
full infinite swapping which is based on alternating between partial infinite
swapping (PINS) algorithms, which can be shown to approximate (theoreti-
cally and practically) the INS scheme. The mathematical theory for the INS
and PINS is developed in [6]. Numerical studies on fairly complex Lennard-
Jones systems (very challenging benchmark problems from chemistry) have
been conducted. Improvements of three orders of magnitude in performance
over conventional parallel tempering were observed at an increased compu-



tational cost of 5-15%.

2 Numerical methods for controlled stochastic delay systems
2.1 Problem formulation and issues

The Markov chain approximation class of algorithms [A] are effective meth-
ods for the numerical approximation of optimal controls and values for gen-
eral continuous-time nonlinear stochastic systems. First, we approximate
the process by a controlled finite-state Markov chain that satisfies certain
minimal local consistency properties, and then we solve the Bellman equa-
tion for the approximation. This gives the approximating costs and con-
trols. Finally, we prove convergence as the approximation parameters go to
zero. These methods were extended to controlled general nonlinear diffusion
models with delays in the dynamics in [B,C] and in the monograph [D]. The
proofs of convergence are probabilistic, being based on the theory of weak
convergence of random processes. They do not depend on the analytical
properties of the Bellman equation for the original model, and converge un-
der virtually the weakest possible conditions. In the absence of delays in
the dynamics, the probabilistic basis of the proofs is a key to the generality,
robustness, and usefulness of the methods. With delays, it is absolutely
essential, since then virtually nothing is known about the properties of the
Bellman equation for the original model.

The numerical problem is particularly difficult if the control and/or re-
flection terms in the dynamical model are delayed, since then the memory
needs with naive approximations can be enormous, due to the fact that
approximations to the memory segments of these processes lead to very
high-dimensional numerical models. For such cases, we reformulated the
problem in terms of a stochastic “wave” or “transportation” equation [D],
whose numerical solution requires much less memory, and which yields the
optimal costs and controls. The emphasis in [D] was on the theoretical foun-
dations. Promising classes of algorithms were developed and convergence
theorems were proved. However, using these “ideal” algorithms in concrete
applications requires many adaptations. There are non-obvious steps in the
derivation of the best Markov chain approximation via the “implicit” ap-
proximation method, and in the derivation of the Bellman equation, partly
due to the need to reduce computation as much as possible and to the fact
that the transformations that are used in the transportation equation refor-
mulation introduce non-physical quantities that must be approximated by
the observed physical data. Such details as well as data illustrating the use-



fulness of the methods was left to recent works [7,8,9], which provide guides
to the coding and applications, and give data illustrating the improvement
in performance that is possible when the delays are taken into account.,
without ad-hoc approximations.

In [10] 2 main concern was a class of problems that contains simple
models of internet regulation, where the physical model turns out to be a
reflected diffusion, and both the control and reflection terms are delayed in
the dynamics. The variables were the controlled source rates and the queue
level, where the queue levels and overflows (lost packets) are observed at the
router/queue and the controls are determined there. There are communica-
tion delays in getting the information to the sources and the data from the
source to the router. This served as a concrete illustration of the methods,
and can be taken to be illustrative of the benefits to be gained by the use
of numerical methods. It was seen that controls that take the past (over
the delay interval) into account can yield much improved performance. The
controls to be computed are robust in that they perform well when the sys-
tem parameters change. These problems would be intractable by any other
currently proposed method; e.g., via the use of time discretizations of the
memory segments over the delay interval. The source rates and queue levels
for the uncontrolled system could oscillate wildly. The controlled system
was a vast improvement in terms of the overflow, source rates, and queue
levels.

2.2 Results and key findings

Numerical methods for controlled delay systems, more general
problems. In [11], we continued the theoretical and algorithmic devel-
opment for the transportation equation approach for important classes of
models not covered by the previous works, and for which their methods
of proof are inadequate. One of the motivating examples concerned sources
that had files that they wished to be admitted to a network. The file creation
process was Poisson. Requests for admission were sent to a queue/router,
and received there after a delay. The admission process was controlled, with
permission for admission determined at the queue, and received back at the
source after another delay. Overflows, total delays and non admissions were
penalized.

The admissions control model is covered by the following more general



form, where 6 is the maximum delay:

dz(t) = c(z(t), u(t))dt + o(z(t))dw(t)
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N(') is a Poisson random measure and u(-) is the control. The u;() are
measures over the delay interval. The reflection term z(-) serves to keep the
path in a compact polyhedral constraint set G, and y(-) is the vector of its
components that are due to reflection from the various faces of G. As an
alternative, one could stop the process when it first reaches the boundary of
G and add an associated penalty, but the reflecting boundary case models
applications in communications systems that are of interest, and it is the
more difficult case.

Delayed and controlled jump terms were not previously allowed, and
presented particular problems, Further complicating matters, in our model
the jump term can be controlled, which requires non-standard methods such
as the so-called relaxed Poisson measure approach [A], owing to the problems
of characterizing the limit of convergent sequences of approximations to the
controlled jump term. Another shortcoming of the prior work is that it
did not allow point delays in the reflection terms (and certainly not in the
jump terms); e.g., where the delay is concentrated at, say a single point
—6. The term du,.(6) was replaced by dt, so the delay was “spread out”
by a suitable choice of the continuous function p(:). In applications, such
as those considered in the data-oriented papers [7,9], a point delay in the
original model was replaced by a delay that is slightly distributed. While
this did not compromise the usefulness of the data, especially since delays
are often distributed, it was still important to develop methods that can
handle models with such point delays. The proofs for the simpler case
cannot be simply carried over to the current model, and required substantial
modifications.

More complicated nonlinear control stochastic systems with de-
lays. Modeling and approximation. There are many important classes
of nonlinear control stochastic systems with delays whose analysis has not
been previously considered in anyway in the literature. For example sys-
tems with dynamics containing terms of the form b(x(t+61), z(t +62), u(t +



03),u(t + 64)), etc, where §; < 0 and they might take different values; or
with analogous terms involving reflection and/or jump terms. There are
applications in communications systems that originally motivated the work.
For such models the issues of admissible controls, admissible approximat-
ing controls, or numerical procedures, had not been previously investigated.
These issues were addressed in [12,13], which showed that natural but quite
non conventional definitions of admissible controls must be used, and con-
structed natural approximations. The definitions are important since the
set of admissible controls and solutions must be closed under weak conver-
gence, and the approximations to the u;(t) are all selected at time ¢, but
applied at later different times ¢ + |6;]. The transportation equation format
was extended to cover a large class of such systems as well.
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